An agent-based random-utility-maximization model to generate social networks with transitivity in geographic space

نویسندگان

  • Theo A. Arentze
  • Matthias Kowald
  • Kay W. Axhausen
چکیده

Stochastic actor-based approaches receive increasing interest in the generation of social networks for simulation in time and space. Existing models however cannot be readily integrated in agent-based models that assume random-utility-maximizing behavior of agents. We propose an agent-based model to generate social networks explicitly in geographic space which is formulated in the random-utilitymaximizing (RUM) framework. The proposed model consists of a friendship formation mechanism and a component to simulate social encounters in a population. We show how transitivity can be incorporated in both components and how the model can be estimated based on data of personal networks using likelihood estimation. In an application to the Swiss context, we demonstrate the estimation and ability of the model to reproduce relevant characteristics of networks, such as geographic proximity, attribute similarity (homophily), size of personal networks (degree distribution) and clustering (transitivity). We conclude that the proposed social-network model fits seamlessly in existing large-scale micro-simulation systems which assume RUM behavior of agents. © 2013 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An agent model of social network and travel behavior interdependence

Travel is a prerequisite for activities which maintain social and business connections, building the vital social networks which conduct the flow of values, services, and opportunity. This paper presents a multi-agent simulation to study linked geographical and social spaces. The model simultaneously generates a social network and travel behavior by defining social-networking visits as travel a...

متن کامل

A Utilitarian Approach to Modeling Information Flows in Social Networks

We propose a multi-agent based utilitarian approach to model and understand information flows in social networks that lead to Pareto optimal informational exchanges. We model the individual expected utility function of the agents to reflect the net value of information received. We show how this model, adapted from a theorem by Karl Borch dealing with an actuarial Risk Exchange concept in the I...

متن کامل

building models to understand the dynamics and evolution of opinions and decisions of agents in a social network

We propose a multi-agent based utilitarian approach to model and understand information flows in social networks that lead to Pareto optimal informational exchanges. We model the individual expected utility function of the agents to reflect the net value of information received. We show how this model, adapted from a theorem by Karl Borch dealing with an actuarial Risk Exchange concept in the I...

متن کامل

The impact of network characteristics on the diffusion of innovations

This paper studies the influence of network topology on the speed and reach of new product diffusion. While previous research has focused on comparing network types, this paper explores explicitly the relationship between topology and measurements of diffusion effectiveness. We study simultaneously the effect of three network metrics: the average degree, the relative degree of social hubs (i.e....

متن کامل

The Influence of Location on Nodes’ Centrality in Location-Based Social Networks

Nowadays, due to the widespread use of social networks, they can be used as a convenient, low-cost, and affordable tool for disseminating all kinds of information and data among the massive users of these networks. Issues such as marketing for new products, informing the public in critical situations, and disseminating medical and technological innovations are topics that have been considered b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Social Networks

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2013